Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841600

RESUMO

Efficient charge transport has been observed in iodine-doped, iodide-based room-temperature ionic liquids, yielding high ionic conductivity. To elucidate preferred mechanistic pathways for the iodide ( I - )-to-triiodide ( I 3 - ) exchange reactions, we have performed 10 ns reactive molecular-dynamics calculations in the liquid state for 1-butyl-3-methylimidazolium iodide ([BMIM][I]) at 450 to 750 K. Energy-barrier distributions for the iodine-swapping process were determined as a function of temperature, employing a charge-reassignment scheme drawn in part from electronic-structure calculations. Bond-exchange events were observed with rate-determining energy barriers ranging from ~0.19 to 0.23 ± 0.06 eV at 750 and 450 K, respectively, with an approximately Arrhenius temperature dependence for iodine self-diffusivity and reaction kinetics, although diffusion dominates/limits the bond-exchange events. This charge transfer is not dissimilar in energetics to those in solid-state superionic conductors.


Assuntos
Compostos de Iodo/química , Líquidos Iônicos/química , Imidazóis/química , Cinética
2.
J Phys Chem B ; 121(26): 6436-6441, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28636376

RESUMO

Efficient charge transport has been observed in iodide-based room-temperature ionic liquids when doped with iodine. To investigate preferred pathways for the iodide (I-)-to-triiodide (I3-) exchange reaction and to clarify the origin of this high ionic conductivity, we have conducted electronic structure calculations in the crystal state of 1-butyl-3-methylimidazolium iodide ([BMIM][I]). Energy barriers for the different stages of the iodine-swapping process, including the reorientation of the I-···I3- moiety, were determined from minimum energy paths as a function of a reaction coordinate. Hirshfeld charges and structural parameters, such as bond lengths and angles, were monitored during the reaction. Several bond-exchange events were observed with energy barriers ranging from 0.17 to 0.48 eV and coinciding with the formation of a twisted I-···I3- complex. Striking similarities were observed in the mechanics and energetics of this charge-transfer process in relation to solid-state superionic conductors.

3.
Sci Rep ; 7: 45410, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28350013

RESUMO

Irradiation of biological matter triggers a cascade of secondary particles that interact with their surroundings, resulting in damage. Low-energy electrons are one of the main secondary species and electron-phonon interaction plays a fundamental role in their dynamics. We have developed a method to capture the electron-phonon inelastic energy exchange in real time and have used it to inject electrons into a simple system that models a biological environment, a water chain. We simulated both an incoming electron pulse and a steady stream of electrons and found that electrons with energies just outside bands of excited molecular states can enter the chain through phonon emission or absorption. Furthermore, this phonon-assisted dynamical behaviour shows great sensitivity to the vibrational temperature, highlighting a crucial controlling factor for the injection and propagation of electrons in water.

4.
Environ Sci Technol ; 49(22): 13676-83, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26513644

RESUMO

One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of (90)Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its ß-decay on the cement paste structure. We show that (90)Sr is stable when it substitutes the Ca(2+) ions in C-S-H, and so is its daughter nucleus (90)Y after ß-decay. Interestingly, (90)Zr, daughter of (90)Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for (90)Sr storage.


Assuntos
Materiais de Construção , Resíduos Radioativos , Radioisótopos de Estrôncio/química , Compostos de Cálcio/química , Fissão Nuclear , Silicatos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...